Managing Machine
Learning Workflow with

Amazon SageMaker

New Services, Use Cases,

and Best Practices

(@ Provectus

Introduction

Over the past several years, artificial intelligence and machine
learning have gone from hype buzzwords circulating in tech
media to transformative forces upending entire industries and
generating enormous value for those spearheading the

transformation.

However, as Al and ML become almost mainstream, the
requirements for technologies and tools used for building Al
solutions get more complex and nuanced. Companies want
to empower their IT teams to drive Al transformations and
develop specific ML systems to deliver measurable results
faster and more efficiently. They naturally expect Al/ML

stack to rapidly evolve to meet their needs.

At the recent re:Invent conference, Amazon Web Services
(AWS) revealed Amazon SageMaker Studio, a web-based
IDE that tightly integrates all components of the ML
ecosystem within a single interface, to allow for faster and
more efficient code editing, debugging, tracking and tuning of

training jobs.

In this whitepaper, we will explore Amazon SageMaker
Studio and look into its newly integrated services, including
Amazon SageMaker Experiments, Amazon SageMaker
Autopilot, Amazon SageMaker Debugger, Amazon
SageMaker Model Monitor, as well as Amazon SageMaker

Notebooks.

https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning
https://aws.amazon.com/blogs/aws/amazon-sagemaker-studio-the-first-fully-integrated-development-environment-for-machine-learning/

Amazon SageMaker Studio

SageMaker Studio is JupyterLab on steroids, which helps developers write code,
track experiments, visualize data, and perform debugging and monitoring

all within a single, integrated visual interface.

Amazon SageMaker Studio is a web-based integrated development environment (IDE) for machine
learning, designed to build, train, debug, deploy and monitor ML models. It provides all the tools
needed to efficiently take ML models from experimentation to production in a single unified visual

interface.

€ AmazonSageMaker Studio File Edit View Run Kemel Git Tabs Settings Help

g [gboost_customer_churn.ipyr X A& Trial Component Chart

B + XDO [» m C Makdwn v O conda_amazon

* Have the predictor variable in the first column
* Not have a header row

But first, let's convert our categorical features into numeric features.

train:loss _last
°
»

: | model_data - pd. (churn)
model_data - pd. ([model_data[1, model_data.drop([

°

o ramT Lo
And now let's split the data into training, validation, and test sets. This will period
help prevent us from overfitting the model, and allow us to test the models

) . & Trial Component List X
accuracy on data it hasn't already seen.

[¢]

: | train_data, validation_data, test data - np. (model_data. (frac

train_data. (, header , index) TRIAL COMPONENTS
validation_data. (, header , index)
- 10 rows selected Add chart

Now we'll upload these files to S3. v customer-churn-predi... Training job Trial-3

customer-churn-predi... Training job Trial-2
: boto3. : : bucket). os.path. refix,
0 (Buckee) ¢ (prefi customer-churn-predi... Training job Trial-1
boto3. 0- ; (bucket). (0s.path. join(prefix, 9
customer-churn-predi... Training job Trial-0
eoe

0 2 € conda_amazonei_mxnet_p27 | Idle Mode: Command @ Ln1,Col1 xgboost_customer_churn.ipynb

ML model being built in SageMaker Studio

Use Cases

Amazon SageMaker Studio enables ML engineers to:

Write and execute code Build and train machine
in Jupyter notebooks learning models
Deploy models and monitor data Track and debug machine
drift to check models” performance learning experiments

An all-around tool, Studio enables engineers to work and navigate through the following stages of

machine learning workflow:
- Data preparation

+ Model development and debugging

+ Model training, tuning and evaluation
- Experiment management
+ Model deployment

+ Model monitoring

1 3 5
2 4
rhl-lz
Get Data T Train Model Improve
Clean, Prepare and Test Data

Manipulate Data

ML Workflow — Fully accessible and manageable with SageMaker Studio

Amazon SageMaker Studio allows for deployment of ML models as SageMaker endpoints, and also

for monitoring models to see how production data is different compared to those used for training.

Studio features notebook instances by default. When launching an EC2 instance, Jupyter Notebook
or JupyterLab are automatically pulled and configured, based on settings, to shortcut to model

experimentation. Let’s look at Studio’s specifics, features and services in more detail.

Onboarding & Access

Amazon SageMaker Studio allows for two modes of authentication:

« AWS Single Sign-On (SSO) — For those who have an AWS enterprise account and have

exported client accounts

- AWS Identity and Access Management (IAM) — Access is similar to other AWS tools and

products

Access to Amazon SageMaker Studio can be provided without exposing AWS Console to users.

They sign in via a link using a login and password sent to a specified email address.

Features

SageMaker Studio Notebooks, SageMaker Experiments, SageMaker Autopilot, SageMaker
Debugger, and SageMaker Model Monitor are at the core of SageMaker Studio IDE.

© 2020 Provectus. All rights reserved | provectus.com 4

@ AMAZON SAGEMAKER

SageMaker Studio IDE

Ground Truth Built-in SageMaker SageMaker Model SageMaker

Data Labeling Algorithms Notebooks Experiments Training Debugger Sagel e

Neo

ML Model SageMaker Model SageMaker
Marketplace Training Autopilot Hosting Model Monitor

AWS ML Stack

Notebooks

By default, Amazon SageMaker Studio provides ML engineers with next-generation notebooks,

which are more effective and efficient than instance-based notebooks.

The new notebooks have near-instant startup times and can be easily shared among users. To share a
notebook, simply take a snapshot of the notebook and share it with another user. This overrides the
requirement to share the notebook itself. The snapshot can include cell outputs and GitHub details,

to accelerate and simplify collaboration.

@ Amazon SageMaker Studio File Edit View Run Kernel Git Tabs Settings Help
= + t c & Launcher X | [A] test.ipynb

m/ B + XO [» m C Code
o Name Last Modified
o [test.ipynb 40 minutes ago [11: numpy Y

[2]: | np.random.rand(10, 3, 5)

array([[[0.00881875, 0.86548143, 0.90092994, 0.91786104, ©.42857306],
[0.53569861, 0.73622718, 0.74481635, 0.98204362, 0.81934747],
[0.15440823, 0.63474262, 0.02404234, 0.6023246 , 0.6940740711,

[[0.30243822, 0.78138383, 0.53158029, 0.59137632, @.37106986],
[0.79108876, 0.97968463, 0.37803494, 0.98601876, 0.59422237],
[0.63185058, 0.58435382, 0.47380824, 0.93429058, 0.33387359]],

[[0.56160685, 0.9559505 , 0.00848133, 0.15860255, @.17002807],
[0.27383986, 0.0079615 , 0.0560675 , 0.65666566, @.8586399 1,
[0.78124782, 0.81146498, 0.76945033, 0.05629361, 0.67127089]],

[[0.03884883, 0.60105425, 0.31029273, 0.74835811, 0.27128139],
[0.57809666, 0.22630845, 0.23887807, 0.42079618, 0.21469222],
[0.56906803, 0.64862788, 0.46084787, 0.67190495, 0.69426068]1,

[[0.89439004, 0.05638532, 0.37405603, 0.45388334, 0.87464973],
[0.29114549, 0.964676 , 0.74200933, 0.95519342, 0.21988433],
[0.90057412, 0.92349337, 0.06352709, 0.98353279, 0.02978806]1,

[[0.16534521, 0.8045721 , 0.9935193 , 0.92831495, 0.50180875],
[0.10515346, 0.03784488, 0.00487228, 0.96112548, 0.10077597],
[0.93677016, 0.30873106, 0.49401527, 0.01015414, 0.5524286411,

SageMaker Notebooks

Every user receives specific EFS storage that is independent of a particular instance. New notebooks
can be accessed via AWS SSO.

Experiments

Amazon SageMaker Studio allows users to organize, track, compare and evaluate machine learning
(ML) experiments and model versions. This makes it easier to deal with hundreds of thousands of
jobs: keep track of metrics, group jobs by experiment, compare jobs in the same experiment or

across experiments, query past jobs, and more.

A mnist-handwritten-digits-clas X | /& Trial Component List

TABLE PROPERTIES
C

Table properties are global
TRIAL COMPONENTS and column level filters will
override them. To access
0 row selected filters, click the = icon.
N N . =
v v testaccuracy ® Auto refresh enabled
mnist-hand-written-d... Training job cnn-training-job-2-hidden-channels-1575951862 Training 97 0.157259
Column group presets
mnist-hand-written-d... Training job cnn-training-job-20-hidden-channels-1575952537 Training 97 0.2272 Toggle visibility for columns

based on column type.
mnist-hand-written-d... Training job cnn-training-job-5-hidden-channels-1575952087 Training % 0.197844 P
B summary columns
mnist-hand-written-d... Training job cnn-training-job-32-hidden-channels-1575952761 Training 95 0101494 .
tatus
mnist-hand-written-d... Training job ~cnn-training-job-10-hidden-channels-1575952312 Training 95 0.21003)
Experiment

mnist-hand-written-d... cnn-training-job-5-hidden-channels-1575952087 Preprocessing Type

mnist-hand-written-d... cnn-training-job-32-hidden-channels-1575952761 Preprocessing Trial

mnist-hand-written-d... cnn-training-job-20-hidden-channels-1575952537 Preprocessing Trial component

. § . O created on
mnist-hand-written-d... cnn-training-job-2-hidden-channels-1575951862 Preprocessing -
[Last modified
mnist-hand-written-d. cnn-training-job-10-hidden-channels-1575952312 Preprocessing
Metrics

Parameters

Tags

SageMaker Experiments

Debugger

The overwhelming majority of failed training jobs is caused by inappropriate initialization of
parameters, a poor combination of hyperparameters, design issues in code, and other issues.
Debugger makes it possible to automatically identify (and make visible) complex issues arising in
machine learning training jobs, so those issues can be proactively addressed and a robust training

process maintained.

| SMDEbugger-CoudWatehrLor X R ——

|8 + O 0 » m C Mrkdown v O conda_tensorflow.p36 O
e par o « Expertment: Unassigned
»,) Tal: Unassigned
hyperparameters - { 3 ¥
T Metrics Debugging Parsmetars Avtfacts AWS Settings
Note that Sagemaker-Debugger is only supported for py_ version="py3’ currently.
[E————
Lets start the training by calling fit() on the MXNet estimator Consorfion:
2019-12.01.07-26-43-57-
aws-traloiog-job
Created 3 minutes ago LossNotDecreasing am:aws:sagemaker:us-west-
16 minutes ago
3 minutes 290 PoorWelghtintalization am:awssagemakerus-west-

estimator. 71t (wait 3 minutes ago MyCustomRule [Eee—

Result 4 Tral Component Chart. X

Asaresult of calling the fit() SageMaker debugger kicked off a rule evaluation job for our custom TRIAL COMPONENTS 2 rows selected. Select rows to toggle chart visibilty.
gradient logic in parallel with the training job that was monitoring the tensors output by the training job. As _ _ —
You can see, In the summary, there was no step in the tralning which reported vanishing gradients in the * Y A2
tensors. Although, the loss was not found to be decreasing at step 1900. © amawssagemakt
amawssagemale
[44): estimator. .)

[44]: [{'RuleConfigurationName': 'LossNotDecreasing’, Charts
'RuleEvaluationJobArn': 'arn:aws:sagemaker:us-west-2:331110439030:processing-job/smdebug
ger=damo arTsiens\ossnotdec reus ig=TA5a 11267 sparse_softmax_cross_entropy_loss/value:0_avg with 1-minute aggregation
‘RuleEvaluationStatus': 'NoIssuesFound',
'LastModifiedTime': datetime.datetime(2019, 12, 1, 7, 39, 41, 2570@@, tzinfo=tzlocal

O},

{'RuleConfigurationNane': 'PoorWeightInitialization'

‘RuleEvaluationJobArn' : 'arn:aws:sagemaker:us-west-2:331110439030:processing—job/sndebug
ger-deno-mnist-tens-poorweightinitialization-752170ce’,

‘RuleEvaluationStatus': 'NoIssuesFound',

‘LastModifiedTime': datetime.datetine(2019, 12, 1, 7, 39, 41, 257000, tzinfostzlocal
O},

{'RuleConfigurationane': 'MyCustomRule',

*RuleEvaluationJobArn': 'arn:aws:sagemaker:us-west-2:331110439830:processing-job/sndebug
ger-deno-nnist-tens-mycustomrule-3cef575e"

‘RuleEvaluationStatus': 'NoIssuesFound',

‘LastModifiedTine': datetime.datetine(2019, 12, 1, 7, 39, 41, 257000, tzinfo=tzlocal
(92);)

Let's try and look at the logs of the rule job for loss not decreasing. To do that, we'll use this utlity function
to get a link to the rule job logs

SageMaker Debugger

© 2020 Provectus. All rights reserved | provectus.com 6

Model Monitor

Model Monitor automatically monitors ML models in production and flags data quality issues as they
appear, helping to combat ‘data drift’ and maintaining high prediction accuracy without having to

‘attach’ a bundle of data capture, statistical analysis, rule management and alert tools.

Amazon SageMaker Studio File Edit View Run Kemel Git Tabs Settings Help

c & Amazons X - 3 ; el- £ -mo X | o - ofs model-mo X
CHART PROPERTIES
Monitoring results Monitoring job histon AWS settings
= il y ¥ Timeline
O 1week
AutoML-toms-super-notebo. AMAZON SAGEMAKER MODEL MONITOR ® 1day
UC-DEMO-xgb-chum-pred- ® 12hours
Amazon SageMaker Model Monitor detects data drift and other Issues that can affect models in production and alerts you 5o you can take corrective ® Ghours

demo-xgboost-customer-ch. action.
® 1hour

mengyw-test-form-1
ZCHARTY, Statistic

mengyw-test-capture
gyw- ! ® Average

my-sagemaker-ap1

Int'l Plan_yes: Sum > ® sampleCount

0 s
mengyw-test-vpc-3 o e
DEMO-xgb-chum-pred-mod. ® Minimum

5004 L

mengyw-test-vpc-2

Feature
mengyw-test-vpc

feature_data_lt1 P

SageMaker Model Monitor

Autopilot

An autoML component of Amazon SageMaker, Autopilot automatically trains and tunes ML models
for classification or regression, based on customer data. It allows engineers to maintain visibility and

full control over the process.

&> Amazon SageMaker Studio File Edit View Run Kemel Git Tabs Settings Help Preview Rele]
' (] & Trial Component List X | & scammers-clf SageMakerAutopilotCandidat X

®/ Read-only mode Import notebook

EXPERIMENTS

S—— —— Amazon SageMaker Autopilot Candidate Definition Notebook

Last Modified This notebook was automatically generated by the AutoML job scammers-clf. This notebook allows you to customize the candidate definitions and execute the SageMaker

Unassigned trial components 13 hours ago Autopilot workflow.

@®

scammers-clf-aws-auto-ml. 13 hours ago The dataset has 20 columns and the column named scammer is used as the target column. This is being treated as a BinaryClassification problem. The dataset also has 2
e T classes. This notebook will build a BinaryClassification model that maximizes the *F1* quality metric of the trained models. The "F1* metric applies for binary classification
with a positive and negative class. It mixes between precision and recall, and is recommended in cases where there are more negative examples compared to positive examples.
5
O

As part of the AutoML job, the input dataset has been randomly split Into two pieces, one for training and one for validation. This notebook helps you inspect and modify the
data transformation approaches proposed by Amazon SageMaker Autopilot. You can interactively train the data transformation models and use them to transform the data.
Finally, you can execute a multiple algorithm hyperparameter optimization (multi-algo HPO) job that helps you find the best model for your dataset by jointly optimizing the
data transformations and machine learing algorithms.

Available Knobs Look for sections like this for recommended settings that you can change.

Contents

. Sagemaker Setup

A. Downloading Generated Candidates

B. SageMaker Autopilot Job and Amazon Simple Storage Service (Amazon S3) Configuration
. Candidate Pipelines

A. Generated Candidates

B. Selected Candidates
. Executing the Candidate Pipelines

A. Run Data Transformation Steps

B. Multi Algorithm Hyperparameter Tuning
. Model Selection and Deployment

A. Tuning Job Result Overview

B. Model Deployment

SageMaker Autopilot

© 2020 Provectus. All rights reserved | provectus.com 7

Brief Summary

ML stack is available Shareable notebooks Based on JupyterLab,
in one single service simplify collaboration with all its benefits

Now that we have taken a broad look at Amazon SageMaker Studio’s features, let’s discuss them in

more detail, starting with Amazon SageMaker Experiments.

Amazon SageMaker Experiments

Amazon SageMaker Experiments was announced in December 2019. According to AWS,
SageMaker Experiments is the ultimate tool for engineers, allowing them to easily organize, track,

and compare machine learning training jobs.

Before Amazon Sagemaker Experiments

Before going deep into SageMaker Experiments, let’s review how engineers previously

supplemented some of its basic features with other tools like TensorFlow.

Engineers organize, track, and compare ML training jobs in TensorFlow’s Tensorboard. There they
can log training metrics (and other scalars), examine the execution graph, visualize hyperparameter

tuning, evaluate the model with fairness indicators, and more.

Unfortunately, Tensorboard has several critical flaws:

- Represents only the training segment of the entire ML workflow
- Does not allow for tracking of parameters used to make a run

«+ Complex when it comes to comparing various runs

- Supports only TensorFlow and PyTorch

It also makes sense to look at Amazon SageMaker before Experiments was introduced. Back then,
developers simply had a training script backed with a managing script, which would spin up the
training process. After finishing a few training jobs in this fashion, it became clear that comparing
training jobs would be difficult. One had to keep track of training processes, but there was no clear
or convenient way to do so. By adding AWS Sagemaker Search, Amazon addressed the issue of
searching for a specific training job with complex queries, but the trial comparison and experiment

organization were still out of scope.

© 2020 Provectus. All rights reserved | provectus.com

https://docs.aws.amazon.com/sagemaker/latest/dg/experiments.html
https://www.tensorflow.org/tensorboard

estimator = TensorFlow(
role=role,
sagemaker_session=sagemaker_session,
train_instance_count=train_instance_count,
train_instance_type=train_instance_type, Amazon SageMaker Training jobs
hyperparameters=kwargs,
output_path=output_path,
model_dir=model_dir,
entry_point="main.py", Q search training jobs
dependencies=["core"],

Training jobs

py_version="py3", Name v Creation time v
framework_version="1.13",
metric_definjtions:[cnn-training-job-1575883977 Dec 09, 2019 09:32 UTC
‘Name': 'loss', 'Regex': r"'loss':\s([\d.]+)"
] { ! 8 \ ([\]) } ! cnn-training-job-1575883752 Dec 09, 2019 09:29 UTC
’
distributions={ cnn-training-job-1575883498 Dec 09, 2019 09:24 UTC
‘mpi': {
! bled': T cnn-training-job-1575883243 Dec 09, 2019 09:20 UTC
enabled': True,
'processes_per_host': 1, cnn-training-job-1575883019 Dec 09, 2019 09:16 UTC
'custom_mpi_options': "--NCCL_DEBUG INFO",

}
b

code_location=code_location,

Training jobs at Amazon SageMaker before 2019 update

After Amazon SageMaker Experiments

In their announcement at re:Invent, AWS made it clear that their primary goal is “to make it as simple
as possible to create experiments, populate them with trials, and run analytics across trials and

experiments.”

Given that, the following features and functions were put on the table:

+ Seamless integration into the existing ML workflow
- Effective tracking and management of experiments

- Decomposition of a monolith workflow into multiple steps

Core Concepts

- Trial Component — A single step of the machine learning workflow. For instance, data

cleaning, model training, model evaluation, etc.

« Trial — A multi-step machine learning workflow, where each step is described by an

individual trial component.

- Experiment — A collection of related trials. Add various trials to compare to an experiment.

Tracked ltems
+ Parameters + Outputs + Metrics

- Inputs - Artifacts

© 2020 Provectus. All rights reserved | provectus.com 9

How It Works

First define an experiment in code using Amazon SageMaker SDK. This is typically done in the

management script, where all instructions for spinning up a training process are declared:

experiment = Experiment.create(
experiment_name="mnist-digits-classification”,
sagemaker_boto_client=sm)

Once the experiment has been created, define a Tracker object, which is used to log all information

related to the trial component.

with Tracker.create(display_name="Preprocessing", sagemaker_boto_client=sm) as tracker:
tracker.log_input(name="mnist-dataset", media_type="s3/uri", value=inputs)
tracker.log_parameters({
"normalization_mean": 0.1307,
"normalization_std": 0.3081,

b

Tracker automatically creates a trial component for which all information will be logged. In this
example we define a “Preprocessing” trial component, where we log the input dataset and log
parameters applied during dataset transformation. This trial component is not yet associated with

any trials. Let’s create one.

cnn_trial = Trial.create(
trial_name=trial_name,
experiment_name=experiment.experiment_name,
sagemaker_boto_client=sm

).add_trial_component(tracker.trial_component)

Let's demonstrate how to use Amazon SageMaker Autopilot by launching a scammer classification

experiment in Amazon SageMaker Studio.

estimator.fit(
inputs={'training': inputs},
job_name=cnn_training_job_name,
experiment_config={
"ExperimentName": experiment.experiment_name,
"TrialName": cnn_trial.trial_name,
"TrialComponentDisplayName": "Training",

© 2020 Provectus. All rights reserved | provectus.com

How to Analyze Experiments

Amazon SageMaker Studio

Analyzing experiments in Amazon SageMaker Studio is easy. All experiments can be visualized in

real time using predefined widgets accessible in the experiments tab. There it is possible to take a

closer look at trials, trial components, metrics, parameters, etc., and also to create charts.

c [® mnist-handwrit X | & Describe Trial ¢ X | /& Describe Trial ¢ X mnist.py X | ™ Terminal 1

A / mnist-hand-written-digits-classification-
1575882439 / cnn-training-job-32-hidden- Experiment: mnist-hand-written-digits-classification-1575882439
channels-1575883977 /

Trial: cnn-training-job-32-hidden-channels-1575883977

TRIAL COMPONENTS
1 row selected Trial stages Charts Metrics Parameters Artifacts AWS Settings Debugger Trial Mappings
Name
Training
Created
Preprocessing 2 months ago

Training Name Value

SageMaker.ImageUri 520713654638.dkr.ecr.us-east-2.amazonaws.
SageMaker.InstanceCount 1

Preprocessing

Created SageMaker.InstanceType ml.c4.xlarge

2 months ago .

SageMaker.VolumeSizelnGB 30

backend “gloo"

dropout 0.2

epochs 2

hidden_channels 32

optimizer "sgd"
sagemaker_container_log_level 20
sagemaker_enable_cloudwatch_metrics false

sagemaker_job_name "cnn-training-job-1575883977"
sagemaker_program "mnist.py"

sagemaker_region "us-east-2"

sagemaker_submit_directory "s3://sagemaker-us-east-2-943173312784/ct

lAmazon SageMaker Studio File Edit View Run Kernel Git Tabs Settings Help

Cc [®] mnist-handwrit X A Describe Trial € X A Describe Trial C X | = mnist.py X | B Terminal 1 X

A / mnist-hand-written-digits-classification-
1575882439 / cnn-training-job-32-hidden- Experiment: mnist-hand-written-digits-classification-1575882439
channels-1575883977 /

Trial: cnn-training-job-32-hidden-channels-1575883977

TRIAL COMPONENTS

1 row selected Trial stages Charts Metrics Parameters Artifacts AWS Settings Debugger Trial Mappings

Name

) Training Job name ARN Status
Training

Created cnn-training-job- arn:aws:sagemaker:us- Completed
Preprocessing 2 months ago 1575883977 east-
2:943173312784:training-
job/cnn-training-job-

Preprocessing 1575883977

Created

2 months ago
Creation time Last modified time Training time (seconds)
2019-12- 2019-12- 3
09T09:32:57.000Z 09T09:32:57.000Z

Billable time (seconds) Managed spot training 1AM role ARN

116 savings arn:aws:iam::943173312784:role/service-

0% role/AmazonSageMaker-ExecutionRole-
20191206T130980

Instance type Instance count Volume size in GB
ml.c4.xlarge 1 30

Volume KMS key id

2020 Provectus. All rights reserved | provectus.com

Amazon SageMaker SDK

Alternatively, all information about the experiment can be exported to a Pandas DataFrame and

create graphs and charts there, to compare different experiments and trials.

>>> from sagemaker.analytics import ExperimentAnalytics
>>> trial_component_analytics = ExperimentAnalytics(

>>> for col in analytic_table.columns:

sagemaker_session=sess, p!‘lnt(col)
experiment_name=some_experiment.experiment_name
) TrialComponentName
>>> analytic_table = trial_component_analytics.dataframe() .
DisplayName
SourceArn
dropout

epochs

hidden_channels

optimizer

test:accuracy
test:accuracy
test:accuracy
test:accuracy
test:accuracy
test:accuracy

Min
Max
Avg
StdDev
Last
Count

Amazon SageMaker Experiments: Downsides & Weaknesses

- Does not allow building of complex DAGs — It supports only sequential execution. Several

stages cannot be run in parallel; different execution paths cannot be declared, which is a

critical limitation.

+ Lack of instruments for configuring robust pipelines — Currently, Experiments does not

allow to define logic for timeouts and retries.

- Out of the box, Ul is available only in Amazon SageMaker Studio — The Ul has numerous

bugs, and it needs to be enhanced from a UX perspective.

Open source alternatives: Metaflow, Kubeflow, MLFlow.

AWS SageMaker Debugger

Amazon SageMaker Debugger was announced in December 2019 as a new capability of Amazon

SageMaker. It automatically identifies complex issues developing in machine learning training jobs,

and comes in a single package with Notebooks, Experiments, Autopilot and Model Monitor.

Because the training process can be corrupted by a variety of obscure issues, from inappropriate

initialization or a poor combination of parameters to a design issue in code, data scientists need an

automated tool to reduce time wasted fixing errors, thus running experiments more effectively and

cost-efficiently.

© 2020 Provectus. All rights reserved | provectus.com

https://docs.aws.amazon.com/sagemaker/latest/dg/train-debugger.html

How to Debug?

Code Experiments
« Unit tests - Unit tests - Asserts for model parameters
- Logging - Logging - Tracking loss curves / metrics
. , during training
+ Peer review + Peer review

+ Checking model outputs

Amazon SageMaker Debugger allows users to monitor, track, and log specific training metrics and
loss curves, and to check model outputs. In comparison with Jupyter Notebooks, where one needs
to log all metrics, loss curves, and other details on their own in a separate tab, AWS offers a much

more efficient and scalable solution.

Accuracy report
print('Accuracy: ', sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels}))

cost : 5.745171: 100% | MEEEENNNEEE| 550/550 [00:01<00:00, 319.00it/s]
cost : 1.780057: 550/550 [00:01<00:00, 309.36it/s]
cost : 1.122779: 550/550 [00:01<00:00, 317.76it/s]
cost : 0.872012: 550/550 [00:01<00:00, 334.38it/s]
cost : 0.738203: 550/550 [00:01<00:00, 303.13it/s]
cost : 0.654729: | 550/550 [00:01<00:00, 303.78it/s]
cost : 0.596024: 100% | HEEEENENEN| 550/550 [00:01<00:00, 310.52it/s]
cost : 0.552217: 100% | MEEEENNNEEN| 550/550 [00:01<00:00, 308.68it/s]
cost : 0.518255: 550/550 [00:01<00:00, 307.12it/s]
cost : 0.491113: | 550/550 [00:01<00:00, 306.57it/s]
cost : 0.084112: 16%|M] | 87/550 [00:00<00:02, 226.18it/s]
index = []

ori =[]

pred = []

labels = sess.run(tf.argmax(mnist.test.labels, 1))
predictions = sess.run(tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images})

for i in range(@,mnist.test.num_examples):
if labels[i] != predictions[i]:
index.append(i)

ori.append(labels[i])
pred.append(predictions[i])

Logging in Jupyter Notebooks — All details will be lost when launching the experiment anew

Amazon SageMaker Debugger combines the best of the two worlds — Logging and Statistics — to

enable data scientist and ML engineers to:
- Track various model parameters and metrics during training

- Upload parameters to Amazon S3 for storage and further use

.

Confirm that values satisfy predetermined rules (e.g. vanishing gradient, class imbalance)

- Explore and visualize tracked values in Amazon SageMaker Studio

© 2020 Provectus. All rights reserved | provectus.com 13

How Amazon SageMaker Debugger Works

@ AMAZON SAGEMAKER
Q‘? Action > Stop the training

e OO / Amazon
| O CloudWatch Event
T C) 2

Debugger SDK

Training Analysis
in progress \ in progress —_— gl Action > Analyze using

Amazon
Training Rules SageMaker
Container Container Notebook

e

] K @ Action > Visualize Tensors
Customer's S3 Bucket Using Charts

Amazon SageMaker
Studio Visualization

Amazon SageMaker Debugger — How it works

In Amazon SageMaker, a machine learning model is trained in a separate training container.
Debugger embeds into the training process to write logs to Amazon S3. In the meantime, other
containers are used to monitor data that is generated and stored in Amazon S3. If any training rules
are violated, alerts are pushed to Amazon CloudWatch and the training is terminated. The logic
behind this dictates that the experiment should stop immediately when any one of the rules has
been violated, since it no longer makes sense to continue the training. Here is where we can process
and analyze alerts to identify specific activities leading to errors in training using Amazon SageMaker
Notebook. Data stored in Amazon S3 can be visualized using Amazon SageMaker Studio

Visualization.

Debugger API

- Trial — An aggregation of metrics for one training job, either in Amazon S3 or locally, that is

different from Experiment trials.
+ Tensor — A type of a saved parameter that is being tracked in the training process (e.g. loss)

+ Hook — A callback for saving parameters. It gets embedded into the training process to

push them to Amazon S3.

+ Rule — A predicate that verifies if a constraint is satisfied or not.

14

Debugger for SageMaker SDK Model

import sagemaker as sm +i q
q f . imator = Estimator
from sagemaker.debugger import rule_configs, Rule, CollectionConfig cS aro S ator(

Choose a built-in rule to monitor your training job rules = Rules.custom(

rule = Rule.sagemaker(

rule_configs.exploding_tensor(),

configure your rule if applicable

rule_parameters={"tensor_regex": ".x"},

specify collections to save for processing your rule

collections_to_save=[
CollectionConfig(name="weights"),
CollectionConfig(name="1osses"),

name="'VGRule',

image_uri="'864354269164.dkr.ecr.us—east-1.amazonaws.com/s
instance_type="'ml.t3.medium', # instance type to run the
source='rules/vanishing_gradient_rule.py', # path to the
rule_to_invoke="'VanishingGradientRule', # name of the cla
volume_size_in_gb=30, # EBS volume size required to be at
collections_to_save=[CollectionConfig("gradients")], # co

1, rule_parameters={

U "threshold": "20.0" # this will be used to initia

Pass the rule to the estimator b
sagemaker_simple_estimator = sm.tensorflow.TensorFlow()

entry_point="script.py",

role=sm.get_execution_role(),

framework_version="1.15",

py_version="py3",

argument for smdebug below

rules=[rule],

)

sagemaker_simple_estimator.fit()
tensors_path = sagemaker_simple_estimator.latest_job_debugger_artifacts_path()

import smdebug.trials as smd
trial = smd.create_trial(out_dir=tensors_path)

How to embed Debugger into a SageMaker model

Sagemaker Debugger supports the ingestion of rules and hooks to the training jobs running on AWS

Sagemaker with only a few adjustments to the training code.

Debugger for Local Models

from smdebug.rules import invoke_rule
from smdebug.trials import create_trial

import smdebug.tensorflow as smd
hook = smd.KerasHook(out_dir="'~/smd_outputs/"')

trial = create_trial('s3://smdebug-dev-test/mnist-job/")
rule_obj = VanishingGradientRule(trial, threshold=0.0001)
invoke_rule(rule_obj, start_step=0, end_step=None)

model = tf.keras.models.Sequential([... 1)
model.compile(
optimizer="'adam',
loss="sparse_categorical_crossentropy',

Add the hook as a callback
model.fit(x_train, y_train, epochs=2, callbacks=[hook])
model.evaluate(x_test, y_test, callbacks=[hook])

Create a trial to inspect the saved tensors
trial = smd.create_trial(out_dir="'~/smd_outputs/"')

How to use Debugger locally, on Keras

Sagemaker Debugger also supports ingestions of hooks in local mode. This allows to develop and
train models locally while still leveraging all the power Debugger provides with Amazon Sagemaker
Studio.

Rules

- Vanishing gradients — As more layers with specific activation functions are added to neural

networks, gradients of the loss function approach zero. As it gets harder to train the network,

© 2020 Provectus. All rights reserved | provectus.com 15

Debugger starts sending alerts.

- Overfitting — The machine learning model learns the noise in the training data to the point

where it affects the performance of the model on new data.

+ Poor weight initialization — As layer activation outputs explode or entirely vanish in the
network, loss gradients become either too large or too small to flow backwards beneficially,

thus preventing the network from converging.

- Saturated activations — Neurons output values close to the asymptotic ends of the
bounded activation function, thus damaging both the information capacity and the learning

ability of the network.

- Overpruned trees — Disproportionately large sections of the decision tree get removed,
limiting the capacity to accurately classify instances, underfitting, and inaccurate

performance.

How to Use Amazon SageMaker Debugger

Save Tensors — Add hooks as parameters to SageMaker API Estimator, or add them to the

code of the training pipeline
Apply Rules — Add rules as parameters to invoke on AWS, or manually invoke them locally

Handle CloudWatch Alerts — Keep track of alerts and process all notifications, training

stops and other alerts.

Integrations: Keras, TensorFlow, PyTorch, MXNet.

Amazon SageMaker Autopilot

AWS envisions Amazon SageMaker Autopilot as an autoML tool for creating machine learning

models with full visibility and control. Using a single API call, or with a few clicks, engineers can

automatically train and tune machine learning models for classification and regression.

According to AWS, Amazon SageMaker Autopilot should be able to:

- Accurately inspect the dataset

- Identify the optimal combination of data preprocessing steps, machine learning algorithms,

and hyperparameters

« Train an inference pipeline that can be deployed either on a real-time endpoint or for batch

processing

© 2020 Provectus. All rights reserved | provectus.com

16

https://aws.amazon.com/sagemaker/autopilot/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-autopilot-fully-managed-automatic-machine-learning/

- Generate Python code to demonstrate how data has been preprocessed, for better

explainability and further reuse, or for manual tuning

With Autopilot, data scientists and ML engineers receive a fully-managed infrastructure to create
and deploy ML models automatically. This includes auto data cleaning and preprocessing, auto
algorithm selection, auto hyperparameter optimization, auto instance and cluster size selection, on

top of virtually zero use of code.

Optimized time and resources Minimal knowledge of the

spent on building ML models specifics of machine learning

However, Amazon SageMaker Autopilot also has a few major restrictions:
« Input data must only be in tabular format (non-structured data is not supported)

« Only three types of models are supported (linear regression, binary classification, multi-class

classification)

- Limited set of combinations of data preprocessors and algorithms (custom combinations are not

allowed)
- Limited set of metrics (additional metrics cannot be added)

Given all that, Amazon SageMaker Autopilot is hardly the most flexible tool in Amazon SageMaker

Studio, but it is well-suited for standardized ML tasks and activities.

How to Use Amazon SageMaker Autopilot

To launch an experiment using Amazon SageMaker Autopilot, access Amazon SageMaker Studio,
define the problem to solve, upload tabular data in Amazon S3 bucket, define target variable(s) to

predict, define the metric(s) to evaluate the model’s quality, and launch the experiment.

@ @ i &

Raw data Target Automatic Full visibility Model
model creation control leaderboarding
Load tabular data from Select target column The correct algorithm is Full visibility with Select the best model for
Amazon S3 to train the for prediction chosen, training and tuning is model notebooks your needs from a ranked list
model done automatically the model of recommendations

Deploy and
monitor the model

Choice to optimize and retrain, to improve model quality

Amazon SageMaker Autopilot — How it works

© 2020 Provectus. All rights reserved | provectus.com 17

Let's demonstrate how to use Amazon SageMaker Autopilot by launching a scammer classification

experiment in Amazon SageMaker Studio.

é}} Amazon SageMaker Studio File Edit View Run Kernel Git Tabs Settings Help
- c & Create experiment X | & Describe Trial Component X | & Trial Component List

L Create Amazon SageMaker Autopilot Experiment

o EXPERIMENTS

JOB SETTINGS
1 row selected Create Experiment

Experiment Name
e e scammer-classification
Unassigned trial components 9 hours ago Maximum of 63 alphanumeric characters. Can include hyphens (-), but not spaces. Must be unique within

your account in an AWS Region.
house-prices-aws-auto-ml-job 7 hours ago

S3 location of input data
he lis Enter the location in S3 where your training data is stored. To find a path, go to Amazon 53 (£

3://t i i profil i a3

Target attribute name

The target attribute is the attribute in your dataset that you want Amazon SageMaker Autopilot to make
predictions for.

is_scammer
The attribute name is case-sensitive and must match exactly the name in your input dataset

S3 location for output data
Enter the location in S3 where you want to store the output. To find a path, go to Amazon S3 [}

$3://test-autopilot/contributor-profiles-

Select the machine learning problem type

@ Auto
® Binary classification
@ Linear regression

@ Multiclass classification
Objective metric

F1

Do you want to run a complete experiment?
® Yes

@ No, run a pilot to create a notebook with candidate definitions

Creating an experiment: S3 location (input & output), Target Attribute, Problem type, Metric

2 Launcher X | 4 Trial Component List X | & scammers—lf

c

EXPERIMENT: SCAMMERS-CLF Open candidate generation notebook Open data exploration notebook

Analyzing Data Feature Engineering Model Tuning Completed
Amazon SageMaker Autopilot is tuning the model.
If experiment is taking too long to run, you can stop the experiment

You can always return to this page later by choosing this experiment on the Experiments tab in the navigation panel.
Trials Job profile

TRIALS

0 row selected

rial name 3 Start time v Objective

tuning-job-1-453880480e46459daf-001-b214c48c d 6 seconds ago 0.7137050032615662
K Best: tuning-job-1-453880480e46459daf-002-.... € 5 seconds ago 0.747065007686615
tuning-job-1-453880480e46459daf-003-c4f7a10c ed 6 seconds ago

tuning-job-1-453880480e46459daf-004-1362fbea ted 6 seconds ago

tuning-job-1-453880480e46459daf-006-d96b4984 omp 6 seconds ago

tuning-job-1-453880480e46459daf-011-682ec1ab 7 seconds ago

tuning-job-1-453880480e46459daf-012-700fae95 7 seconds ago

tuning-job-1-453880480e46459daf-013-b20bf8df 7 seconds ago

tuning-job-1-453880480e46459daf-014-8983948e 7 seconds ago

tuning-job-1-453880480e46459daf-015-047250¢c3 7 seconds ago

Monitoring the process: Data analysis, Feature Engineering, Model Tuning

2020 Provectus. All rights reserved | provectus.com

(]

SCAMMER-CLF Open candidate generation notebook Open data exploration notebook
Trials Job profile

TRIALS

1 row selected Deploy model

rial name s Start time

eorrrerr gy e e v e e e v v SU—— SU— - rerererrerrre

tuning-job-1-8bbc6ca5a9744ec6ae-211-6f842873 ompleted 8 hours ago 0.7454209923744202
tuning-job-1-8bbc6ca5a9744ec6ae-205-ed99b7aa ompleted 8 hours ago 0.7694180011749268
tuning-job-1-8bbc6ca5a9744ec6ae-207-81d17e32 ompleted 8 hours ago 0.762319028377533

tuning-job-1-8bbc6ca5ad744ec6ae-208-1a43b155 ompleted 8 hours ago 0.7499449849128723
tuning-job-1-8bbc6ca5a9744ec6ae-202-784df893 ompleted 8 hours ago 0.7692610025405884
tuning-job-1-8bbc6ca5a9744ec6ae-203-775e9c07 ompleted 8 hours ago 0.7201880216598511
tuning-job-1-8bbc6ca5a9744ec6ae-204-a3a09fe5 ompleted 8 hours ago 0.6480720043182373
tuning-job-1-8bbc6ca5a9744ec6ae-194-74fc13d1 Completed 8 hours ago 0.7640359997749329
tuning-job-1-8bbc6ca5a9744ec6ae-201-9e39ee3c ompleted 8 hours ago 0.7296479940414429
tuning-job-1-8bbc6ca5a9744ec6ae-198-39156b07 ompleted 8 hours ago 0.7414379715919495
tuning-job-1-8bbc6ca5a9744ec6ae-199-b8a298e3 ompleted 8 hours ago 0.7636100053787231
tuning-job-1-8bbc6ca5a9744ec6ae-200-41401370 ompleted 8 hours ago 0.7433480024337769
tuning-job-1-8bbc6ca5a9744ec6ae-193-c463b443 ompleted 8 hours ago 0.7565720081329346
*Best:tuning-job-‘\-Bbbcs:aSaQ?MecGaeJ97-d_.. ompleted 8 hours ago 0.7815799713134766
tuning-job-1-8bbc6ca5a9744ec6ae-196-bf5f29ba mpleted 8 hours ago 0.7445899844169617
tuning-job-1-8bbc6ca5a9744ec6ae-189-a46e608b ompleted 9 hours ago 0.7736039757728577
tuning-job-1-8bbc6ca5a9744ec6ae-195-6ble1a8¢c ompleted 9 hours ago 0.7207350134849548
tuning-job-1-8bbc6ca5a9744ec6ae-188-4758b0fd ompleted 9 hours ago 0.7726370096206665

tuning-job-1-8bbc6ca5a9744ec6ae-192-caf62255 Completed 9 hours ago 0.7456430196762085

Selecting and deploying the best model from the list of completed trials

Once the experiment is completed, Amazon SageMaker automatically generates a few output item

- Data Exploration Notebook featuring data preprocessing steps, to help identify issues in the

dataset

@ Launcher X | [Trial Component List X | & scammers-clf ilotDz L] ilotDz ilotCz X | & Trial C 1t List

B + X DO 0 » m C Makdwnv O o Python 3 (Data Science)
Percent of Missing Values

Within the data sample, the following columns contained missing values, such as: nan , white spaces, or empty fields.

SageMaker Autopilot will attempt to fill in missing values using various techniques. For example, missing values can be replaced with a new 'unknown' category for
Categorical features and missing Numerical values can be replaced with the mean or median of the column.

We found 1 of the 20 of the columns contained missing values. The following table shows the 1 columns with the highest percentage of missing values.

% of Missing Values

email 0.97%

Count Statistics

For String features, it is important to count the number of unique values to determine whether to treat a feature as Categorical or Text and then processes the
feature according to its type.

If the feature is Categorical, SageMaker Autopilot can look at the total number of unique entries and transform it using techniques such as one-hot encoding. If the field
containsa Text string, we look at the number of unique words, or the vocabulary size, in the string. We can use the unique words to then compute text-based features, such
as Term Frequency-Inverse Document Frequency (tf-idf).

Note: If the number of unique values is too high, we risk data transformations expanding the dataset to too many features. In that case, SageMaker Autopilot will attempt to
reduce the dimensionality of the post-processed data, such as by capping the number vocabulary words for tf-idf, applying Principle Component Analysis (PCA), or other
dimensionality reduction techniques.

The table below shows 20 of the 20 columns ranked by the number of unique entries.

Number of Unique Entries Number of Unique Words (if Text)
scammer 2 WE
net_bad_flags 7 n/a
num_rejects) n/a
num_regions) n/a
num_countries 23 n/a
jobs_flagged_by_robocop_and_passed_sanity_check 69 n/a

num_cities 88 n/a

Example of a data exploration notebook

- Candidate Generation Notebook featuring suggested preprocessing method, suggested

algorithm, and suggested hyperparameter ranges

2 Launcher X | & Trial ComponentList X | & scammers-clf SageMakerAutopilotD: X SageMakerAutopilotCz X | [W] SageMakerAutopilotC: ® | Z Trial Component List X

B + X 0O 0 » = C Markdownv O s | Python 3 (Data Science) O

Generated Candidates

The SageMaker Autopilot Job has analyzed the dataset and has generated 10 machine learning pipeline(s) that use 2 algorithm(s). Each pipeline contains a set of feature
transformers and an algorithm.

dpp0-xgboost: This data transformation strategy first transforms 'numeric' features using Robustimputer (converts missing values to nan), ‘text' features using
MultiColumnTfidfVectorizer. It merges all the generated features and applies RobustStandardScaler. The transformed data will be used to tune a xgboost model. Here is the
definition:

: automl_interactive_runner.

’

dpp1-xgboost: This data transformation strategy first transforms 'numeric' features using Robustimputer, 'text' features using MultiColumnTfidfVectorizer. It merges all the
generated features and applies RobustPCA followed by RobustStandardScaler. The transformed data will be used to tune a xgboost model. Here is the definition:

: automl_interactive_runner. {

’

Example of a candidate generation notebook

+ Model artifacts, processed data, and parameters for each candidate, all of which are

uploaded to Amazon S3 bucket

Based on the examples above, it is evident that Amazon SageMaker Autopilot provides deep insight
into how a specific machine learning model is built, thus simplifying ML model explainability and

interpretability.

Alternatives: Cloud AutoML by Google, AutoKeras, H20 AutoML, firefly.ai, Auto-WEKA

Amazon SageMaker Model Monitor

Amazon SageMaker Model Monitor is a new capability of Amazon SageMaker that automatically

monitors machine learning models and notifies developers if any issues arise.

The tool addresses the problem of data drift in non-experimental data sets; it compares training data
with production data to capture “changing” attributes that shape assumptions and decisions made

during the training of a model, to maintain the accuracy of predictions.

Though data scientists and ML engineers know how to handle data drift, building tools to capture

data, compare it to the training set(s), define rules, detect drift, send alerts, etc. takes time and

© 2020 Provectus. All rights reserved | provectus.com 20

https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html

resources. To minimize this heavy lifting, AWS came up with Amazon SageMaker Model Monitor.

Automatically monitors Pushes alerts when issues

quality of the production data in production data are detected

How Amazon SageMaker Model Monitor Works

Let’s assume that the machine learning model, which is wrapped as a SageMaker endpoint, receives

requests and generates predictions based on the training data stored in Amazon S3.

Once Amazon SageMaker Model Monitor is activated, it creates a production request storage that
enables shadowing of data streams, requests and predictions, and stores them in a separate S3

bucket.

Amazon SageMaker Model Monitor launches a SageMaker processing job that retrieves schema
from the training data (attributes like minimum and maximum values, mean, average, variance, and

more), to generate a JSON report featuring baseline statistics.

A scheduled monitoring job is created that compares requests stored in the production request
storage and baseline statistics, to generate a report on statistics and violations. Some metrics are also

pushed to Amazon CloudWatch, to notify users of detected errors.

& ki

SageMaker Training
Processing Job Data

SageMaker
Endpoint

—

REQUESTS

Lo
Scheduled @
Monitoring Job

Baseline Production
Statistics Request Storage

Amazon Generated Reports:
CloudWatch Statistics and Violations

Amazon SageMaker Model Monitor Architecture

Note: Though most metrics are pushed to Amazon CloudWatch, some of them are
accessible only in the generated reports bucket in Amazon S3. To access those, unparse a

JSON report and search for violations manually.

2]

Amazon SageMaker Model Monitor is part of Amazon SageMaker Studio, so one can easily check
running jobs, reports, constraints, etc. All statistics, monitoring results and data collected can be

viewed and further analyzed in a notebook.

Git Tabs Settings Help
& Amazon€ X | ofls UC-DEMC X | s DEMO-xg X | ofs model-mi X | ofis UC-DEMC X | o model-mi X SageMaki X iy model-m X | s DEMO-xg X | o model-m X o
MONITORING JOB DETAILS

Monitoring Execution Name
TS e model-monitoring-201912022100-05028993c7f047164195cd44
UC-DEMO-xgb-churn-pred-. Monitoring Schedule
DEMO-xgb~churn-pred-model-monitor-schedule-2019-11-29-21-48-26
demo-xgboost-customer-ch.

Monitoring Job Status
G o Completed With Violations
mengyw-test-capture
FEATURE STATISTICS
Visualize and analyze the statistics and data collected during this job run in an Amazon SageMaker Notebook. Open Amazon SageMaker Notebook

my-sagemaker-ap1
) mengyw-test-vpc-3
DEMO-xgb-chum-pred-mod
mengyw-test-vpc-2
MONITORING JOB REPORT
mengyw-test-vpc Amazon SageMaker Model Monitor compared this run against the baseline and detected these constraint violations.

State_VA data type check Data type match requirement is not met. Expected data
type: Integral, Expected match: 100.0%. Observed: Only
99.71264367816092% of data is Integral.

State_UT data type check Data type match requirement is not met. Expected data
type: Integral, Expected match: 100.0%. Observed: Only
99.71264367816092% of data is Integral.

State VT data type check Data type match requirement is not met. Expected data
type: Integral, Expected match: 100.0%. Observed: Only
99.71264367816092% of data is Integral.

State_IA data type check Data type match requirement is not met. Expected data
type: Integral, Expected match: 100.0%. Observed: Only
99.71264367816092% of data is Integral.

& Amazon SageMaker Studio File Edit View Run Kemel Git Tabs Settings Help

c & AmazonS X | s UC-DEMO X % UC-DEMO X | g% model-mo X SageMake X | iy model-mo X | s DEMO-xgt X | ofx model-mo X o
CHART PROPERTIES

Monitoring results Monitoring job histo AWS settings
9 ng j y 9 Timeline

O 1week
AutoML-toms-super-notebo. AMAZON SAGEMAKER MODEL MONITOR ® 14y
UC-DEMO-xgb-chum-pred- ® 12 hours
Amazon SageMaker Model Monitor detects data drift and other Issues that can affect models in production and alerts you so you can take corrective ® 6lons
demo-xgboost-customer-ch. action.
® 1hour
mengyw-test-form-1
SO Statistic
engyw-test-ca
mengyw-test-capture ® Average
my-sagemaker-ap1 Int'l Plan_yes: Sum ® SampleCount
mengyw-test-vpc-3 O sum
DEMO-xgb-chum-pred-mod. - ® Minimum
® Maximum
mengyw-test-vpc-2
Feature
mengyw-test-vpc
feature_data_int1 P

Example of real-time model monitoring in Amazon SageMaker Model Monitor

Hidden Value of Amazon SageMaker Model Monitor

Given all that, we can assume that Scheduled Monitoring Job is a key value driver for data scientists
in Amazon SageMaker Model Monitor. The baseline element of the tool, however, is its ability to

handle data wrangling between its artifacts and services.

Amazon SageMaker Model Monitor is an SDK that allows to easily move and shadow data to S3
buckets while enabling fine-tuning and fixing of the Processing Job and Monitoring Job as Deequ-

based containers.

In other words, SageMaker Model Monitor's hidden value lies in its ability to combine specific

© 2020 Provectus. All rights reserved | provectus.com 22

https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/

artifacts and services in a fully-managed, automatic environment, to help data scientists build

architectures like:
- Built-in container with schema extractor from training data
« Built-in container with Min/Max/Mean and KS test

- SDK which hides data wrangling, shadowing, job scheduling, pushing metrics to CloudWatch

and retrieval of the latest job results

Amazon SageMaker Elastic Inference

Amazon SageMaker Elastic Inference (El) is a new capability of Amazon SageMaker that allows to

cost-efficiently accelerate the throughput and reduce the latency of real-time inferences from

models that are deployed as Amazon SageMaker hosted models.
Amazon SageMaker Elastic Inference allows data scientists and ML engineers to:
- Add inference acceleration to a hosted endpoint at a fraction of the cost of a full GPU instance

+ Add an El accelerator in one of the available sizes to a deployable model in addition to a CPU

instance type

- Add the model as a production variant to an endpoint configuration, which is used to deploy a

hosted endpoint

- Add an El accelerator to an Amazon SageMaker notebook instance, to test and evaluate

inference performance when building the models

Amazon SageMaker El: Benefits & Limitations

EI' (CPU + El Accelerator) allows to quickly, effectively and cost-efficiently deploy machine learning
models as compared to deploys on EC2 instances or deploys as AWS Sagemaker Endpoints. It is
well-suited for projects where one needs to utilize fast accelerators, support streaming pipeline and

maintain cost-efficiency.

Amazon Elastic Inference surpasses the limitations of other deployment options:
- Scales from 1GB to 8GB VRAM
- Offers high TFLOPS in $/h value
« Provides autoscaling

However, El has certain limitations. For example, it is fully available only in six regions. It supports

© 2020 Provectus. All rights reserved | provectus.com 23

https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html

ONNX only through MXNET runtime. It supports only older versions of MXNET and TensorFlow

versions (up to 1.14). It does not support Cuda. Eia2.xlarge is twice as slow as V100, but it costs only

$0.340 per hour.

How to Use El in ONNX Model

To start using Elastic Inference, save the PyTorch model in a standardized format. Then, since only

two types of runtimes are supported, export the model to MXNET, and add a piece of code on the

right, as shown below:

Deploy

mxnet_model = MXNetModel (model_ data=model data,
entry point='resnetl52.py’,
role=role,
py_version='py3',

framework_version='1.4.1") Put it in your model code:

predictor = mxnet_model.deploy(

initial_instance_count=1, ctx = mx.eia()

instance_type='ml.m5.xlarge',
accelerator_type='ml.eial.medium'

)
scores = predictor.predict(input_image.asnumpy())

predictor.delete_endpoint()

Launching El for ONNX models

When compared in terms of inference latency and cost, El performs faster and more cost-efficiently

than c5.4xlarge and p2.xlarge. It is not as fast as p3.2xlarge, but is still more favorable cost-wise.

Initial Results

50
40
30

20

Inference Latency (millis)

c5.4xlarge p2xlarge c5.4x| + eiaxl p3.2xlarge

Instance Type

Comparison of different ML model deployment instances

$1.25
$1.00
$075
$0.50
$0.25

$0.00

Cost per 100k inferences

W |Latency

=0 Cost per 100k
inference

El offers the lowest price on the market while performing better than P2. It has a few limitations in

frameworks and their versions, but they are compensated by such features as auto scaling and rapid

inference acceleration.

© 2020 Provectus. All rights reserved | provectus.com

24

Conclusion and Further Steps

As more companies are looking to implement Al and ML in
one way or another, both tools and technology must evolve
to enable data scientists and ML engineers to explore data
and build ML models more quickly, effectively and cost-
efficiently.

With the release of Amazon SageMaker Studio, AWS gives
engineers the ability to launch JupyterLab-based notebooks
in seconds, access notebooks with SSO, manage multiple
related training jobs, create new experiments and visualize
results, automatically generate and run experiments, detect
and troubleshoot training problems, monitor data drift, and

visualize data metrics and rules violations.

Though Amazon SageMaker Studio has some limitations, it
promises to become the ultimate platform for writing code,
tracking experiments, visualizing data, and performing
debugging and monitoring. AWS continues to enhance
Studio, so we can expect to see more and better features,

and new service integrations in the near future.

© 2020 Provectus. All rights reserved | provectus.com

25

Appendix A

References

aws.amazon.com/sagemaker
docs.aws.amazon.com/sagemaker/latest/dg/gs-studio.html

docs.aws.amazon.com/sagemaker/latest/dg/

experiments.html

docs.aws.amazon.com/sagemaker/latest/dg/train-

debugger.html

aws.amazon.com/sagemaker/autopilot

aws.amazon.com/blogs/aws/amazon-sagemaker-autopilot-
fully-managed-automatic-machine-learning

docs.aws.amazon.com/sagemaker/latest/dg/autopilot-
automate-model-development.html

docs.aws.amazon.com/sagemaker/latest/dg/model-
monitor.html

docs.aws.amazon.com/sagemaker/latest/dg/ei.html

aws.amazon.com/blogs/big-data/test-data-quality-at-scale-
with-deequ

aws.amazon.com/blogs/aws/amazon-sagemaker-studio-the-
first-fully-integrated-development-environment-for-
machine-learning

mckinsey.com/featured-insights/artificial-intelligence/notes-
from-the-ai-frontier-applications-and-value-of-deep-learning

infogq.com/news/2019/12/aws-sagemaker-studio-ide

26

https://aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio.html
https://docs.aws.amazon.com/sagemaker/latest/dg/experiments.html
https://docs.aws.amazon.com/sagemaker/latest/dg/train-debugger.html
https://aws.amazon.com/sagemaker/autopilot/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-autopilot-fully-managed-automatic-machine-learning/
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html
https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/
https://aws.amazon.com/blogs/aws/amazon-sagemaker-studio-the-first-fully-integrated-development-environment-for-machine-learning/
https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning
https://www.infoq.com/news/2019/12/aws-sagemaker-studio-ide/

Appendix B

Authors and Contributors

Stepan Pushkarev
Chief Technology Officer
spushkarev(@provectus.com

Iskandar Sitdikov

ML Engineer
isitdikov(@provectus.com

Lenar Gabdrakhmanov
ML Engineer
lgabdrakhmanov(@provectus.com

Anton Kiselev
ML Engineer
akiselev(@provectus.com

Marat Adayev
ML Engineer

madayev(@provectus.com

Yuriy Gavrilin
ML Engineer
ygavrilin@provectus.com

Rinat Akhmetov

ML Engineer
rakhmetov(@provectus.com

llnur Garifullin
Demo Engineer
igarifullin@provectus.com

Andrii Khakhariev

Copywriter
akhakhariev@provectus.com

Vlad Usatenko

Designer
vusatenko(@provectus.com

For more information reach us at
hello@provectus.com | provectus.com

https://provectus.com

